High-frequency nanofluidics: an experimental study using nanomechanical resonators.
نویسندگان
چکیده
Here we apply nanomechanical resonators to the study of oscillatory fluid dynamics. A high-resonance-frequency nanomechanical resonator generates a rapidly oscillating flow in a surrounding gaseous environment; the nature of the flow is studied through the flow-resonator interaction. Over the broad frequency and pressure range explored, we observe signs of a transition from Newtonian to non-Newtonian flow at omega tau approximately 1, where tau is a properly defined fluid relaxation time. The obtained experimental data appear to be in close quantitative agreement with a theory that predicts a purely elastic fluid response as omega tau --> infinity.
منابع مشابه
Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators.
Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, that is, a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond na...
متن کاملHigh frequency MoS2 nanomechanical resonators.
Molybdenum disulfide (MoS2), a layered semiconducting material in transition metal dichalcogenides (TMDCs), as thin as a monolayer (consisting of a hexagonal plane of Mo atoms covalently bonded and sandwiched between two planes of S atoms, in a trigonal prismatic structure), has demonstrated unique properties and strong promises for emerging two-dimensional (2D) nanodevices. Here we report on t...
متن کاملFrequency and Q factor control of nanomechanical resonators
We present an integrated scheme for dielectric drive and read-out of high-Q nanomechanical resonators that enable tuning of both the resonance frequency and quality factor with an applied dc voltage. A simple model for altering these quantities is derived, incorporating the resonator’s complex electric polarizability and position in an inhomogeneous electric field, which agrees very well with e...
متن کاملDynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation.
The ability to control mechanical motion with optical forces has made it possible to cool mechanical resonators to their quantum ground states. The same techniques can also be used to amplify rather than reduce the mechanical motion of such systems. Here, we study nanomechanical resonators that are slightly buckled and therefore have two stable configurations, denoted 'buckled up' and 'buckled ...
متن کاملNanomechanical resonance spectroscopy: a novel route to ultrasensitive label-free detection.
We propose a new chemical detection technique in which an analyte's vibrational frequencies are interrogated directly using an array of nanomechanical resonators. This "nanomechanical resonance spectroscopy" (NRS) could permit label-free chemical detection, combining the high sensitivity of nanomechanical approaches with the high selectivity of traditional spectroscopy. A computational proof of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 98 25 شماره
صفحات -
تاریخ انتشار 2007